Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Clin Chim Acta ; 537: 26-37, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2060488

ABSTRACT

BACKGROUND AND AIM: SARS-CoV-2 infection spawns from an asymptomatic condition to a fatal disease. Age, comorbidities, and several blood biomarkers are associated with infection outcome. We searched for biomarkers by untargeted and targeted proteomic analysis of saliva, a source of viral particles and host proteins. METHODS: Saliva samples from 19 asymptomatic and 16 symptomatic SARS-CoV-2 infected subjects, and 20 controls were analyzed by LC-MS/MS for untargeted peptidomic (flow through of 10 kDa filter) and proteomic (trypsin digestion of filter retained proteins) profiling. RESULTS: Peptides from 53 salivary proteins were identified. ADF was detected only in controls, while IL1RA only in infected subjects. PRPs, DSC2, FABP5, his-1, IL1RA, PRH1, STATH, SMR3B, ANXA1, MUC7, ACTN4, IGKV1-33 and TGM3 were significantly different between asymptomatic and symptomatic subjects. Retained proteins were 117, being 11 highly different between asymptomatic and symptomatic (fold change ≥2 or ≤-2). After validation by LC-MS/MS-SRM (selected reaction monitoring analysis), the most significant discriminant proteins at PCA were IL1RA, CYSTB, S100A8, S100A9, CA6, and FABP5. CONCLUSIONS: The differentially abundant proteins involved in innate immunity (S100 proteins), taste (CA6 and cystatins), and viral binding to the host (FABP5), appear to be of interest for use as potential biomarkers and drugs targets.


Subject(s)
COVID-19 , Proteomics , Humans , Chromatography, Liquid , Taste Perception , SARS-CoV-2 , Taste , Tandem Mass Spectrometry , Saliva/metabolism , Biomarkers/metabolism , Immunity, Innate , Fatty Acid-Binding Proteins/metabolism , Transglutaminases/metabolism
3.
Cell Rep ; 34(11): 108852, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-1135278

ABSTRACT

As the global COVID-19 pandemic progresses, it is paramount to gain knowledge on adaptive immunity to SARS-CoV-2 in children to define immune correlates of protection upon immunization or infection. We analyzed anti-SARS-CoV-2 antibodies and their neutralizing activity (PRNT) in 66 COVID-19-infected children at 7 (±2) days after symptom onset. Individuals with specific humoral responses presented faster virus clearance and lower viral load associated with a reduced in vitro infectivity. We demonstrated that the frequencies of SARS-CoV-2-specific CD4+CD40L+ T cells and Spike-specific B cells were associated with the anti-SARS-CoV-2 antibodies and the magnitude of neutralizing activity. The plasma proteome confirmed the association between cellular and humoral SARS-CoV-2 immunity, and PRNT+ patients show higher viral signal transduction molecules (SLAMF1, CD244, CLEC4G). This work sheds lights on cellular and humoral anti-SARS-CoV-2 responses in children, which may drive future vaccination trial endpoints and quarantine measures policies.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Adaptive Immunity/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , COVID-19/virology , Child , Humans , Immunity, Humoral/immunology , Proteome/immunology , SARS-CoV-2/immunology , Signal Transduction/immunology , Viral Load/immunology
SELECTION OF CITATIONS
SEARCH DETAIL